
# honle group





## Solutions for printed circuit boards

Innovative adhesives and sealants for effective production

- Flip chip underfills
- Glob top sealing compounds
- Attaching components on PCBs
- Conformal coatings
- UV and/or thermally curing adhesives
- Leading UV curing equipment
- Complete solutions from a single source

### **Flip Chip Underfills**

Underfills are used for mechanical stabilization of flip chips. This is especially important when soldering ball grid array (BGA) chips.

| Adhesives                            | Viscosity<br>[mPas] | Coefficient of<br>linear expan-<br>sion [ppm/K]<br>below Tg | Base  | Curing*    |
|--------------------------------------|---------------------|-------------------------------------------------------------|-------|------------|
| Vitralit <sup>®</sup> 2655 200 – 400 |                     | 94,0                                                        | Ероху | UV/thermal |
| Vitralit® 2667 3,000 – 5,000         |                     | 27,0                                                        | Ероху | UV/thermal |

\*UV = 320 – 390 nm

### **Glob Top Sealing Compounds**

Sealing compounds and encapsulants based on epoxy resin are often used in electronics as so-called glob tops to protect electronic components. They protect components from

| _             |      |      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------|------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |      |      |      | and the second s |
| (and a second | -    | -    | -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1002          | 1002 | 1002 | 1002 | 1002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1002          | 1002 | 1002 | 1002 | 1002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1002          | 1002 | 1002 | 1002 | 1002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

moisture, dust, dirt and solvents. Glob tops also protect sensitive components from mechanical strain and scratching.

### **Opaque adhesives**

| Adhesives                     | Viscosity [mPas]  | Tg DSC [°C] | Curing*    | Temp. Resist. [°C] | Properties                                                                                            |
|-------------------------------|-------------------|-------------|------------|--------------------|-------------------------------------------------------------------------------------------------------|
| Vitralit <sup>®</sup> 1600 LV | 5,000 - 6,000     | 150         | UV/thermal | -40 to +180        | Suited for larger dies, high chemical resistance, high Tg, very high stability                        |
| Vitralit <sup>®</sup> 1650    | 6,000 - 9,000     | 30 - 40     | UV         | -40 to +180        | Suited for smaller dies, flexible, low water absorption, particle size max. 150 $\mu\text{m}$         |
| Vitralit <sup>®</sup> 1657    | 120,000 - 130,000 | 20 - 40     | UV         | -40 to +180        | Mounting larger compon., low ion content, contains quartz fillers, thixotropic, flexible              |
| Vitralit <sup>®</sup> 1671    | 250,000 - 300,000 | 75 – 95     | UV/thermal | -40 to +180        | Stable dam compound, wet-on-wet application with filler material, ion-free                            |
| Vitralit <sup>®</sup> 1680    | 6,000 - 9,000     | 35 - 45     | UV         | -40 to +180        | Cover. of small dies, flexible, low water absorpt., part. size max. 12 $\mu\text{m},$ high ion purity |
| Vitralit <sup>®</sup> UD 5180 | 18,000 - 23,000   | 60 – 90     | UV/thermal | -40 to +200        | Especially for flexible circuit boards, very high adhesion to metals, jettable                        |

### **Black adhesives**

| Adhesives                      | Viscosity [mPas]  | Tg DSC [°C] | Curing*    | Temp. Resist. [°C] | Properties                                                                                                                      |
|--------------------------------|-------------------|-------------|------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Vitralit <sup>®</sup> 1691     | 280,000 - 310,000 | 100 - 120   | UV/thermal | -40 to +180        | High ion purity                                                                                                                 |
| Structalit <sup>®</sup> 5890   | 300,000 - 400,000 | 110 - 130   | thermal    | -40 to +180        | Excellent thermal conductivity, fast curing                                                                                     |
| Structalit <sup>®</sup> 5891   | 300,000 - 400,000 | 110 - 130   | thermal    | -40 to +180        | Wet-on-wet application with filler material (e.g. St. 5894), very good edge stability and shock resistance                      |
| Structalit <sup>®</sup> 5891 T | 80,000 - 300,000  | 110 - 130   | thermal    | -40 to +180        | Stable dam material, wet-on-wet application with filler material (e.g. St. 5893), very good edge stability and shock resistance |
| Structalit <sup>®</sup> 5892   | 200,000 - 300,000 | 110 - 130   | thermal    | -40 to +180        | Short curing times, high shock resistance, dimensionally stable at high curing temperatures                                     |
| Structalit <sup>®</sup> 5893   | 6,000 - 10,000    | 110 - 130   | thermal    | -40 to +180        | Very good flow characteristics, wet-in-wet-application with dam material (e.g. St. 5891), high shock resistance                 |
| Structalit <sup>®</sup> 5894   | 45,000 - 55,000   | 110 - 130   | thermal    | -40 to +180        | High shock resistance                                                                                                           |
| Structalit <sup>®</sup> 8838   | 6,500 - 7,500     | 15 - 25     | thermal    | -40 to +200        | Flexible potting compound, fast curing, enhanced flow control, electronic grade adhesive, shock-resistant                       |

\*UV = 320 – 390 nm

### **Attaching Components on PCBs**

Before soldering, chips or SMDs (surface mounted devices) are often attached to the PCB (printed circuit board) with UV-curing adhesive. This allows, for example, several chips or other components to be glued onto on a circuit board within just a few seconds to prevent their falling or sliding out of position on the PCB. The secured chips can then be reflowsoldered in a single work step, which saves time and speeds up production.

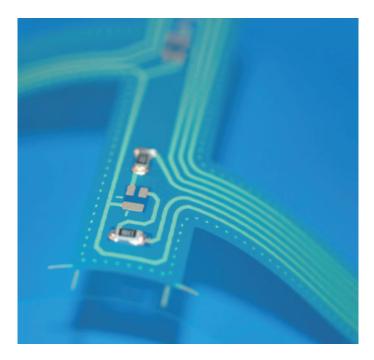
| Adhesives                     | Viscosity [mPas] | Curing                 | Temp. Resist. [°C] | Shore Hardn. | Properties                                                                                                                          |
|-------------------------------|------------------|------------------------|--------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Structalit <sup>®</sup> 3060  | 30,000 - 40,000  | thermal                | -40 to +180        | D 35 – 45    | Fast curing, very high adhesion to hard to bond substrates, high flexibility                                                        |
| Structalit <sup>®</sup> 5604  | 25,000 - 40,000  | thermal                | -40 to +180        | D 75 – 90    | Fast curing, red color                                                                                                              |
| Structalit <sup>®</sup> 5610  | shear thinning   | thermal                | -40 to +180        | D 55 – 65    | Very fast curing even at low temperatures, high temperature resistance, red color                                                   |
| Vitralit <sup>®</sup> 6104 VT | 80,000 - 90,000  | UV, thermal postcuring | -40 to +200        | D 45 – 60    | Acrylate, highly resistant to thermal shock or vibrations, postcuring of shadowed areas possible                                    |
| Vitralit <sup>®</sup> UV 2115 | 20,000 - 30,000  | UV / VIS               | -40 to +150        | D 70 – 80    | Acrylate-epoxy-hybrid, specially formulated to protect sensitive components against mechanical or climate influences, low shrinkage |
| Vitralit <sup>®</sup> UD 2018 | shear thinning   | UV, thermal postcuring | -40 to +150        | D 55 – 65    | Highly resistant against temperature shock, low shrinkage, low coefficient of thermal expansion                                     |

### **Conformal Coatings**

A conformal coating is used to protect electronic components from environmental factors.

Adhesives used as conformal coatings are dual-curing: at their edges and visible surfaces they are cured with UV light; the shadowed areas – for example underneath components or chips – as well as deeper-lying regions are then post-cured by heat application.




| Adhesives                     | Viscosity [mPas]  | Curing*             | Temp. Resist. [°C] | Shore Hardn. | Properties                                                                                                                                               |
|-------------------------------|-------------------|---------------------|--------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vitralit® 1671                | 250,000 - 300,000 | UV/thermal          | -40 to +180        | D 80 – 90    | Stable, suitable as frame for selective coatings, low ion content                                                                                        |
| Vitralit <sup>®</sup> 2004 F  | 60 - 100          | UV/thermal          | -40 to +180        | D 15 – 25    | Post-curing of shadowed areas, fluorescent, high chemical resistance, spray-coating possible, higher flow control due to low viscosity                   |
| Vitralit <sup>®</sup> 2007 F  | 200 - 400         | UV/thermal          | -40 to +180        | D 40 – 50    | Post-curing of shadowed areas, fluorescent,<br>high chemical resistance, higher material stability on chip edges due to<br>higher viscosity              |
| Vitralit <sup>®</sup> 2028    | 160 - 300         | UV/thermal          | -40 to +180        | D 40 – 50    | Post-curing of shadowed areas, high chemical resistance, no bleeding, high mechanical resistance                                                         |
| Vitralit <sup>®</sup> 2009 F  | 100 - 200         | UV/thermal          | -40 to +180        | D 40 – 50    | Post-curing of shadowed areas, fluorescent,<br>high chemical resistance                                                                                  |
| Vitralit <sup>®</sup> 4451    | 600 - 800         | UV                  | -40 to +130        | D 20 – 30    | Acrylate, fast curing, low shrinkage, elastic                                                                                                            |
| Vitralit <sup>®</sup> UD 8050 | shear thinning    | UV/VIS/<br>moisture | -40 to +130        | D 64         | Isocyanacrylate, fast moisture post-curing in shadowed areas, for versatile dispensing methods (jetting, dispenser, etc.), very high humidity resistance |

\*UV = 320 – 390 nm, VIS = 405 nm

### **Conductive Adhesives**

With its Elecolit<sup>®</sup> range Panacol offers a broad spectrum of electrically and/or thermally conductive adhesives.

Elecolit<sup>®</sup> adhesives are a smart solution for contemporary high-tech applications.



Conductive adhesives are usually thermally curing epoxy resin-based or UV-curing acrylate-based adhesives augmented with metallic or anorganic fillers.

Our Elecolit<sup>®</sup> product range includes:

• Heat-curing 1-part adhesives

Benefits: easy to apply by dispenser, screen printing or via needle transfer, no mixing necessary

### • 2-part adhesives, curable at room temperature

Benefits: long storage, curing at room temperature possible, while curing at elevated temperatures speeds up curing processes, low viscosity versions available.

Our electrically conductive Elecolit<sup>®</sup> adhesives are based on epoxy resin combining highest stability and reliability with high flexibility.

Our thermally conductive Elecolit<sup>®</sup> adhesives ensure thermal conductivity between 1.0 to 2.5 W/mK.

For more information on our electrical and thermal conductive products please refer to our "Conductive Adhesives" brochure.

### Perfect Curing of Adhesives and Sealing Compounds with High Performance UV Equipment by Hönle

### **Hönle UV Lamps**

The curing of Vitralit<sup>®</sup> products can be best optimized with Hönle UV equipment.

Hönle provides custom-made products adjusted to the individual requirements:

- UV point sources
- UV flood lamps
- UV curing chambers

# honle 1



### **Hönle UV LED Lamps**

In addition to conventional UV curing technology with gas discharge lamps Hönle is also a leading supplier of UV-LED systems.





You can find further information about our product groups in our special product data sheets. For our comprehensive range of accessories for each product series, please ask for detailed information sheets.

**UV** Adhesives

panacol

### Contact

Panacol-Elosol GmbH Daimlerstr. 8 61449 Steinbach Germany Phone: +49 6171 6202-0 Mail: info@panacol.de www.panacol.com

Panacol-USA, Inc. 142 Industrial Lane Torrington CT 06790 USA Phone: +1 860 738 7449 Mail: info@panacol-usa.com

**Engineered Adhesives** 

www.panacol-usa.com

Panacol-Korea Co., Ltd. #707, Kranz Techno, 388 Dunchon-daero Junwon-gu, Seongnam Gyeonggi-do, 13403 KOREA Phone: +82 31 749 1701 Mail: info@panacol-korea.com www.panacol-korea.com

**Conductive Adhesives** 

Eleco Panacol – EFD 125, av Louis Roche Z.A. des Basses Noëls 92238 Gennevilliers Cedex FRANCE Tél: +33 1 47 92 41 80 Mail: eleco@eleco-panacol.fr www.eleco-panacol.fr

uv-technik speziallampen





eltosch grafix hönle



Panacol-USA, Inc Phone: +1 860 738 7449 www.panacol-usa.com

printconcept

Panacol-Korea Co., Ltd. Phone: +82 31 749 1701 www.panacol-korea.com

Eleco Panacol – EFD Phone: +33 1 47 92 41 80 www.eleco-panacol.fr

Potting

Curing

Operating parameters depend on production characteristics and may differ from the foregoing information. We reserve the right to modify technical data. © Copyright Panacol-Elosol GmbH. Updated 12/19

11

raesch